Tener claro lo que es una teoría científica


«El gran enemigo del conocimiento no es la ignorancia, sino el creer que se tiene conocimiento».
Stephen Hawking

Stephen Hawking, Historia del Tiempo.
Stephen Hawking, Historia del Tiempo.

Para poder analizar la naturaleza del universo, y poder discutir cuestiones tales como si ha habido un principio o si habrá un final, es necesario tener claro lo que es una teoría científica. Consideremos aquí un punto de vista ingenuo, en el que una teoría es simplemente un modelo del universo, o de una parte de él, y un conjunto de reglas que relacionan las magnitudes del modelo con las observaciones que realizamos. Esto sólo existe en nuestras mentes, y no tiene ninguna otra realidad (cualquiera que sea lo que esto pueda significar). Una teoría es una buena teoría siempre que satisfaga dos requisitos: debe describir con precisión un amplio conjunto de observaciones sobre la base de un modelo que contenga sólo unos pocos parámetros arbitrarios, y debe ser capaz de predecir positivamente los resultados de observaciones futuras. Por ejemplo, la teoría de Aristóteles de que todo estaba constituido por cuatro elementos, tierra, aire,fuego y agua, era lo suficientemente simple como para ser cualificada como tal,pero fallaba en que no realizaba ninguna predicción concreta. Por el contrario,la teoría de la gravedad de Newton estaba basada en un modelo incluso más simple, en el que los cuerpos se atraían entre sí con una fuerza proporcional a una cantidad llamada masa e inversamente proporcional al cuadrado de la distancia entre ellos, a pesar de lo cual era capaz de predecir el movimiento del Sol, la Luna y los planetas con un alto grado de precisión.
Cualquier teoría física es siempre provisional, en el sentido de que es sólo una hipótesis:nunca se puede probar. A pesar de que los resultados de los experimentos concuerden muchas veces con la teoría, nunca podremos estar seguros de que la próxima vez el resultado no vaya a contradecirla. Sin embargo, se puede rechazar una teoría en cuanto se encuentre una única observación que contradiga sus predicciones. Como ha subrayado el filósofo de la ciencia Karl Popper, una buena teoría está caracterizada por el hecho de predecir un gran número de resultados que en principio pueden ser refutados o invalidados por la observación.Cada vez que se comprueba que un nuevo experimento está de acuerdo con las predicciones, la teoría sobrevive y nuestra confianza en ella aumenta. Pero si por el contrario se realiza alguna vez una nueva observación que contradiga la teoría, tendremos que abandonarla o modificarla. O al menos esto es lo que se supone que debe suceder, aunque uno siempre puede cuestionar la competencia dela persona que realizó la observación.
En la práctica, lo que sucede es que se construye una nueva teoría que en realidad es una extensión de la teoría original. Por ejemplo, observaciones tremendamente precisas del planeta Mercurio revelan una pequeña diferencia entre su movimiento y las predicciones de la teoría de la gravedad de Newton. La teoría de la relatividad general de Einstein predecía un movimiento de Mercurio ligeramente distinto del de la teoría de Newton. El hecho de que las predicciones de Einstein se ajustaran a las observaciones, mientras que las de Newton no lo hacían, fue una de las confirmaciones cruciales de la nueva teoría. Sin embargo, seguimos usando la teoría de Newton para todos los propósitos prácticos ya que las diferencias entre sus predicciones y las de la relatividad general son muy pequeñas en las situaciones que normalmente nos incumben. (¡La teoría de Newton también posee la gran ventaja de ser mucho más simple y manejable que la de Einstein!)

El objetivo final de la ciencia es el proporcionar una única teoría que describa correctamente todo el universo. Sin embargo, el método que la mayoría de los científicos siguen en realidad es el de separar el problema en dos partes. Primero, están las leyes que nos dicen cómo cambia el universo con el tiempo. (Si conocemos cómo es el universo en un instante dado, estas leves físicas nos dirán cómo será el universo en cualquier otro posterior.) Segundo, está la cuestión del estado inicial del universo. Algunas personas creen que la ciencia se debería ocupar únicamente de la primera parte: consideran el tema de la situación inicial del universo como objeto de la metafísica o la religión. Ellos argumentarían que Dios, al ser omnipotente, podría haber iniciado el universo de la manera que más le hubiera gustado.Puede ser que sí, pero en ese caso él también podría haberlo hecho evolucionar de un modo totalmente arbitrario. En cambio, parece ser que eligió hacerlo evolucionar de una manera muy regular siguiendo ciertas leyes. Resulta, así pues, igualmente razonable suponer que también hay leyes que gobiernan el estado inicial.

Es muy difícil construir una única teoría capaz de describir todo el universo. En vez de ello, nos vemos forzados, de momento, a dividir el problema en varias partes, inventando un cierto número de teorías parciales. Cada una de estas teorías parciales describe y predice una cierta clase restringida de observaciones, despreciando los efectos de otras cantidades, o representando éstas por simples conjuntos de números. Puede ocurrir que esta aproximación sea completamente errónea. Si todo en el universo depende de absolutamente todo el resto de él de una manera fundamental, podría resultar imposible acercarse a una solución completa investigando partes aisladas del problema. Sin embargo, este es ciertamente el modo en que hemos progresado en el pasado. El ejemplo clásico es de nuevo la teoría de la gravedad de Newton, la cual nos dice que la fuerza gravitacional entre dos cuerpos depende únicamente de un número asociado a cada cuerpo, su masa, siendo por lo demás independiente del tipo de sustancia que forma el cuerpo. Así, no se necesita tener una teoría de la estructura y constitución del Sol y los planetas para poder determinar sus órbitas.
Los científicos actuales describen el universo a través de dos teorías parciales fundamentales: la teoría de la relatividad general y la mecánica cuántica. Ellas constituyen el gran logro intelectual de la primera mitad de este siglo. La teoría de la relatividad general describe la fuerza de la gravedad y la estructura a gran escala del universo, es decir, la estructura a escalas que van desde sólo unos pocos kilómetros hasta un billón de billones (un 1 con veinticuatro ceros detrás) de kilómetros, el tamaño del universo observable. La mecánica cuántica, por el contrario, se ocupa de los fenómenos a escalas extremadamente pequeñas, tales como una billonésima de centímetro. Desafortunadamente, sin embargo, se sabe que estas dos teorías son inconsistentes entre sí: ambas no pueden ser correctas a la vez. Uno de los mayores esfuerzos de la física actual, y el tema principal de este libro, es la búsqueda de una nueva teoría que incorpore a las dos anteriores: una teoría cuántica dela gravedad. Aún no se dispone de tal teoría, y para ello todavía puede quedar un largo camino por recorrer, pero sí se conocen muchas de las propiedades que debe poseer. En capítulos posteriores veremos que ya se sabe relativamente bastante acerca de las predicciones que debe hacer una teoría cuántica de la gravedad.
Si se admite entonces que el universo no es arbitrario, sino que está gobernado por ciertas leyes bien definidas, habrá que combinar al final las teorías parciales en una teoría unificada completa que describirá todos los fenómenos del universo.

Dado que las teorías que ya poseemos son suficientes para realizar predicciones exactas de todos los fenómenos naturales, excepto de los más extremos, nuestra búsqueda dela teoría definitiva del universo parece difícil de justificar desde un punto de vista práctico. (Es interesante señalar, sin embargo, que argumentos similares podrían haberse usado en contra de la teoría de la relatividad y de la mecánica cuántica, las cuales nos han dado la energía nuclear y la revolución de la microelectrónica). Así pues, el descubrimiento de una teoría unificada completa puede no ayudar a la supervivencia de nuestra especie. Puede incluso no afectar a nuestro modo de vida. Pero siempre, desde el origen de la civilización, la gente no se ha contentado con ver los acontecimientos como desconectados e inexplicables. Ha buscado incesantemente un conocimiento del orden subyacente del mundo. Hoy en día, aún seguimos anhelando saber por qué estamos aquí y de dónde venimos.
El profundo deseo de conocimiento de la humanidad es justificación suficiente para continuar nuestra búsqueda. Y ésta no cesará hasta que poseamos una descripción completa del universo en el que vivimos.

Stephen Hawking, Historia del Tiempo.
Capítulo 1, Nuestra imagen del universo.

Deja un comentario